
Stopping and filtering waves in phononic circuits

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 37

(http://iopscience.iop.org/0953-8984/16/1/004)

Download details:

IP Address: 171.66.16.125

The article was downloaded on 19/05/2010 at 17:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/1
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 37–44 PII: S0953-8984(04)71058-9

Stopping and filtering waves in phononic circuits

A Akjouj1,4, H Al-Wahsh2, B Sylla3, B Djafari-Rouhani1

and L Dobrzynski1

1 UMR CNRS 8024, UFR de Physique, Université de Lille I, 59655 Villeneuve d’Ascq, France
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Abstract
The acoustic band structures and transmissions through a one-dimensional (1D)
monomode waveguide made of asymmetric slender tube loops pasted together
with slender tubes of finite length are investigated theoretically. These
monomode circuits may exhibit large stop bands where the propagation of
acoustic waves is forbidden. These stop bands (gaps) originate both from the
periodicity of the system and the resonant modes of the loops. The width of
these bandgaps depends on the geometrical parameters of the structure and
may be drastically increased in a tandem geometry made of several successive
asymmetric serial loop structures (ASLSs) which differ in their geometrical
characteristics. These ASLSs may have potential applications as ultra-wide-
band filters.

The discovery of photonic crystals has laid the foundation of bandgap engineering in
mesoscopic systems. The keynote behind the proposal of photonic crystals was the possibility
of modifying the propagation of electromagnetic waves by creating photonic bandgaps in the
band structure of synthetic periodic dielectric structures. Within a complete photonic bandgap,
optical waves, spontaneous emission and zero-point fluctuations are all absent. Because
of its promised ability to influence spontaneous emission [1], and to pave the way to light
localization [2], the pursuit of photonic bandgaps has been the major motivation for studying
photonic crystals. These materials are composed of periodically modulated dielectrics with
the length scale of the periodicity approaching the wavelength of light. This constitutes an
important part of mesoscopic physics, which is just beginning to be explored [3].

It did not take long before photonic crystals aroused interest in their phononic
counterparts, namely, ‘phononic crystals’—artificial two- and three-dimensional (3D) periodic
elastic/acoustic composites [4]. In analogy to photonic crystals, the emphasis was laid on
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Figure 1. Schematic diagram of the one-dimensional asymmetric loop structure studied in the
present work. The lengths of the three tubes are denoted d1, d2 and d3 respectively.

the existence of complete elastic/acoustic bandgaps (ABGs) within which sound, vibrations
and phonons are all forbidden. This is of interest for applications, such as elastic/acoustic
filters and improvements in the design of transducers and noise control, as well as for pure
physics concerned with the Anderson localization of sound and vibration [5]. Ferroelectric,
pyroelectric, piezoelectric and piezomagnetic composites have had long standing applications
as medical ultrasonic and naval transducers as well as for the related tasks in medical
imaging [6]. Such composites were initially constructed for sonar applications and are now
widely used for ultrasonic transducers.

Of particular interest is the existence of acoustic bandgaps in the band structure of one-
dimensional (1D) structures with a variety of geometries [7–10]. In a previous paper [7], we
demonstrated that the acoustic transmission spectrum of 1D comb structures exhibits large gaps.
These structures, called star waveguides, are composed of N ′ dangling side branches (DSBs)
periodically grafted at each of the N equidistant sites on slender tubes. The stop bands originate
from the periodicity of the system determined by the distance between two neighbouring sites
and from the eigen-modes of the DSB which play the role of resonators. The gap widths
also depend on the boundary conditions at the free ends of the side branches, namely the
open and closed tubes. In such systems the propagation is monomode provided that the two
characteristic lengths (the periodicity and the resonator length) and the wavelength are much
larger than the backbone and the side branch diameters [7]. These theoretical results are
confirmed by experiments using an impulse response technique in the interval from 650 to
1100 Hz [9]. Unlike other 1D (e.g. Bragg lattices), 2D or 3D phononic crystals in which the
contrast between the constituents is a critical parameter for the stop band existence, this star
waveguide exhibits relatively large forbidden bands even if the backbone and the resonators
are made of the same material [7].

The topic which will be addressed in this paper concerns the propagation of longitudinal
(acoustic) waves through a quasi-one-dimensional structure, called an asymmetric serial loop
structure (ASLS), of a monomode networked waveguide. The structure is composed of
asymmetric slender tube loops pasted together with slender tubes of finite length (see figure 1).
Such a structure may exhibit new features, in comparison with the star waveguide: for example,
the existence of larger gaps, the avoidance of the constraint on the boundary condition at the end
of the side branches, the appearance of quasi-quantized bands without inserting a defect and the
achievement of complete gaps for a small number of loops. These new features (which could
be of potential interest in acoustic waveguide structures) are essentially due to the asymmetry
of the loop structure which is quite different from the case of the star waveguide [7]. We report
on results of calculated band structures and transmission coefficients. We also show that the
width of the bandgaps may be enlarged by coupling several ASLSs of different geometrical
characteristics. Interestingly, we work in the framework of interface response theory (IRT) [11].

The 1D infinite ASLS can be idealized as an infinite number of unit cells pasted together.
In each unit cell, the two arms of the ring have different lengths d2 (of medium 2) and d3
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Figure 2. Projected band structure of the ASLS as a function of �L = d2 − d3 for d1 = 0.5 and
L = d2 + d3 = 1. The shaded areas represent the bulk bands. The dashed curves indicate the
frequencies for which the denominator of η (equation (1)) vanishes.

(of medium 3). This results in asymmetric loops of length d2 + d3 (see figure 1) which are
pasted to slender tubes of length d1 (of medium 1). We focus in this paper on homogeneous
ASLSs where media 1, 2 and 3 are made of the same material. The dispersion relation of the
infinite ASLS, that relates the pulsation frequency ω to the wavevector k, can be derived using
the IRT [11]. It can be written as cos(kd) = η(ω) where d stands virtually for the period of
the structure and

η = 1

2 sin(α(ω)L/2) cos(α(ω)�L/2)

{
sin(α(ω)d1)

[
5

4
cos(α(ω)L)

− 1
4 cos(α(ω)�L) − 1

]
+ cos(α(ω)d1) sin(α(ω)L)

}
. (1)

Here L = d2 + d3, �L = d2 − d3 and α(ω) = ω/v where v is the longitudinal speed of sound.
Figure 2 displays the projected band structure (the plot is given as the reduced frequency

� = ωd1/v versus �L) of an infinite ASLS for given values of L, and d1 such that
L = 1, and d1 = 0.5 respectively. The shaded areas, corresponding to frequencies for
which |η| < 1, represent bulk bands where acoustic waves are allowed to propagate in
the structure. These areas are separated by mini-gaps within which the acoustic waves are
forbidden. Inside these gaps, the dashed lines show the frequencies for which the denominator
of η (equation (1)) vanishes. The dashed horizontal and curved lines, that correspond to the
vanishing of sin(α(ω)L/2) and cos(α(ω)�L/2) respectively, define the frequencies at which
the transmission through a single asymmetric loop becomes exactly equal to zero. In figure 2,
one can distinguish between two types of mini-gap: those of lozenge pattern that originate
from the crossing of the zero-transmission lines, and the gaps around � = 3 or 9 (occurring
for any value of �L) that are related to the periodicity of the structure. There is one interesting
point to notice in the band structure of figure 2; namely, at certain values of �L (for instance
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Figure 3. The same as in figure 2 but for an ASLS with d1 = 0.5 and L = d2 + d3 = 1.1. Notice
the existence of very narrow (almost flat) mini-bands created in the mini-gaps of lozenge pattern.

�L ∼ 0.4), one can obtain a series of narrow mini-bands separated by large gaps; this is
because the points at which the mini-bands close align more or less vertically in such a way
that a few successive bands may become very narrow.

Figure 3 displays the projected band structure for another geometry, namely, d1 = 0.5
and L = 1.1. One can notice that some of the mini-gaps having a lozenge pattern display
a large variation with �L. In the latter mini-gaps, one can observe the existence of very
narrow (almost flat) mini-bands. These mini-bands become totally flat (and coincide with the
horizontal dashed lines) if L is taken to be equal to 1 instead of 1.1. Indeed, for L = 1, we have
L = 2d1 and one can easily check that both the numerator and denominator of equation (1)
vanish simultaneously at the frequencies of the dashed lines. The physical meaning of such
flat bands is that the infinite structure possesses localized modes at these frequencies, while
the transmission through the finite structure remains equal to zero. Let us finally mention that
the existence and width of the mini-gaps are influenced by both the periodicity of the structure
and the zeros of transmission.

We now turn to the study of the transmission probability. We start with a study of a simple
example, namely a waveguide consisting of a unique asymmetric loop. The transmission
coefficient T can be written as

T =
∣∣∣∣ 2(S2 + S3)S2 S3

(C2 S3 + C3S2 + S2 S3)2 − (S2 + S3)2

∣∣∣∣
2

, (2)

where Ci = cosh[α′(ω)di ], Si = sinh[α′(ω)di ], α′(ω) = jα(ω) = jω/v and j =√−1. The transmission is equal to zero only when S2 + S3 = 0, or equivalently,
2 sin[α(ω)L/2] cos[α(ω)�L/2] = 0. Therefore, zeros of transmission coefficient occur at
frequencies such that α(ω)L = 2mπ and α(ω)�L = (2m ′ + 1)π or equivalently

ωm = v

�L
(2m + 1)π, (3)
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Figure 4. (a)Transmission factor versus the reduced frequency � for a waveguide with one loop
in the case of an asymmetric tube loop with L = 3, �L = 1. (b) The same as in (a) but for a
symmetric tube loop (d2 = d3).

and

ωm′ = v

L
2m ′π, (4)

where m and m ′ are integers.
It is worth noticing that for frequencies given by equation (3), the waves travelling on both

paths of the loop are out of phase [12]. On the other hand, the frequencies given by equation (4)
correspond to the eigen-modes of a loop alone.

The variations of the transmission coefficient T versus the reduced frequency � are
reported in figure 4(a) for �L = 1 and L = 3.

In the particular case of a symmetric loop (d2 = d3, i.e., �L = 0), the transmission
coefficient becomes

T = 16

25 − 9 cos2(α′d2)
. (5)

In contrast with the transmission coefficient of an asymmetric single loop, the transmission
of a symmetric one never reaches zero values (see figure 4(b)). That is why, in symmetric
serial loop structures, the gaps originate only from the periodicity. In contrast, in ASLSs, the
gaps are due to the conjugate effect of the periodicity and the zero transmission associated
with a single asymmetric loop which plays the role of a resonator.

In the case where the number of asymmetric loops becomes greater than one, the zeros of
the transmission coefficient enlarge into gaps. Figure 5 illustrates the transmission spectrum
versus reduced frequency � in ASLSs made up of one (5(a)), two (5(b)) and five (5(c))
asymmetric loops. The parameters are d1 = 1, L = 3 and �L = 1. The lowest panel (5(d))
shows the corresponding band structure. For N = 2 (figure 5(b)) we have only pseudo-gaps,
not full gaps, in the system. As N increases the pseudo-gaps gradually turn into complete gaps
(with transmission equal to zero) centred at almost the same mid-gap frequency.

The transmission rate through a finite-size ASLS containing N = 10 loops with �L = 0.4,
L = 1 and d1 = 0.5 is reported in figure 6(a). Clearly, the existence of wide gaps separated
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Figure 5. Evaluation of the transmission spectrum as a function of the number of loops N . The
parameters are d1 = 1, L = 3 and �L = 1. Notice that as N increases the pseudo-gaps gradually
turn into sharply defined complete gaps. The lowest panel shows the reflected band structure.

by narrow bands show up. Despite the finite number of loops in figure 6(a), the transmission
approaches zero in regions corresponding to the observed gaps in the acoustic band structure
of figure 1. It is worth noticing that the general features discussed in figure 1 are still valid
for any values of d1 and L and various �L. However, the shape of the band structure changes
drastically for fixed values of d1 and �L and various L. Figure 6(b) shows the transmission
spectrum for another different ASLS with N = 10, d1 = 0.7, L = 1.4 and �L = 0.4.

Now, by associating in tandem the above ASLSs, one obtains (figure 6(c)) an ultra-wide
gap where the transmission is cancelled over a large range of frequencies going from � � 1.8
to � � 13.7. In this structure, the huge gap results from the superposition of the forbidden
bands of the individual ASLSs (figures 6(a) and (b)).

If a defect is included in the structure, a localized state can be created in the gap. A defect
in ASLSs can be realized by replacing a finite wire of length d1 by a segment of length d f �= d1

in one cell of the waveguide. The transmission spectrum versus the reduced frequency for a
structure with eight asymmetric loops, and a defect segment of length d f = 0.1d1 located in
the middle of the waveguide, is depicted in figure 7. The frequency of the defect mode inside
the gap depends on the length of the defect segment, whereas the intensity and the quality
factor of the peak in the transmission spectrum depend on the number N of loops in the ASLS.
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Figure 6. (a) Variations of the transmission power through an ASLS for N = 10 loops, d1 = 0.5,
L = 1 and �L = 0.4. (b) The same as in (a), but for d1 = 0.7, L = 1.4 and �L = 0.4.
(c) Transmission power through a tandem structure built of the above ASLSs (a) and (b). The
superposition of the forbidden bands in (a) and (b) is clearly seen in (c).
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Figure 7. Transmission spectrum versus the reduced frequency � for an eight-loop ASLS with one
defect segment of length d f = 0.1d1 located in the middle of the waveguide. The other parameters
are considered to be d1 = 1, �L = 1 and L = 2.

In summary, we have investigated the existence of tunability of complete spectral gaps
in the band structure of a quasi-one-dimensional waveguide with asymmetric slender loops
pasted together with slender tubes of finite length. The waveguide segments and the loops can
be made up of the same or different materials. Compared to other 1D networks such as the
star waveguide [7], the observed gaps in the ASLS are significantly larger. The existence of
the gaps in the spectrum is attributed to the conjugate effect of the periodicity and the zero
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transmission associated with a single asymmetric loop which plays the role of a resonator. In
these systems, the gap width is controlled by the various parameters involved in the problem.
The single symmetric defect is shown to introduce extra modes in the gaps of an otherwise
periodic system. While the computation of the band structure requires an infinitely long
periodic system, the transmission spectrum is calculated only for a finite system. The calculated
transmission spectrum of acoustic waves in a finite ASLS parallels the band structure of the
infinite periodic system. Accordingly, we conclude that the transmission spectrum in all cases
remains consistent for five loops and more. We hope that these findings can be verified in an
easily realizable set of experiments. Such systems can find some useful applications in the
designing of transducers and ultrasonic filters.
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